FEBS Letters 531 (2002) 2–6 FEBS 26599

Minireview

Phospholipase A₂ regulation of arachidonic acid mobilization

Jesús Balsinde^a, Michelle V. Winstead^b, Edward A. Dennis^{b,*}

^aInstitute of Molecular Biology and Genetics, Spanish Council for Scientific Research, University of Valladolid School of Medicine,
47005 Valladolid, Spain

Received 13 May 2002; revised 21 August 2002; accepted 6 September 2002

First published online 24 September 2002

Edited by Edward A. Dennis, Isabel Varela-Nieto and Alicia Alonso

Abstract Phospholipase A₂ (PLA₂) constitutes a growing superfamily of lipolytic enzymes, and to date, at least 19 distinct enzymes have been found in mammals. This class of enzymes has attracted considerable interest as a pharmacological target in view of its role in lipid signaling and its involvement in a variety of inflammatory conditions. PLA₂s hydrolyze the sn-2 ester bond of cellular phospholipids, producing a free fatty acid and a lysophospholipid, both of which are lipid signaling molecules. The free fatty acid produced is frequently arachidonic acid (AA, 5,8,11,14-eicosatetraenoic acid), the precursor of the eicosanoid family of potent inflammatory mediators that includes prostaglandins, thromboxanes, leukotrienes and lipoxins. Multiple PLA₂ enzymes are active within and surrounding the cell and these enzymes have distinct, but interconnected roles in AA release.

© 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.

Key words: Arachidonic acid; Eicosanoid metabolism; Phospholipase; Inflammation

1. Introduction

Phospholipase A₂ (PLA₂) constitutes a superfamily of enzymes that catalyze the hydrolysis of the phospholipid *sn*-2 ester bond, generating a free fatty acid and a lysophospholipid. The PLA₂ reaction is the primary pathway through which arachidonic acid (AA) is liberated from phospholipids. Free AA is the precursor of the eicosanoids, which include the prostaglandins, generated through the cyclooxygenase reaction, and the leukotrienes, generated through the lipoxygenase reaction [1]. Additionally, the PLA₂ reaction generates a platelet-activating factor (PAF) precursor when the lysophospholipid product possesses a choline headgroup and an alkyl linkage in the *sn*-1 position. In such instances, an acetyltransferase can act upon it to produce PAF (1-*O*-alkyl-2-acetyl-*sn*-3-phosphocholine). Thus, PLA₂ is an important signaling en-

*Corresponding author. Fax: (1)-858-534 7390. E-mail address: edennis@ucsd.edu (E.A. Dennis).

Abbreviations: AA, arachidonic acid; PLA₂, phospholipase A₂; cPLA₂, cytosolic Ca²⁺-dependent phospholipase A₂; iPLA₂, cytosolic Ca²⁺-independent phospholipase A₂; sPLA₂, secretory phospholipase A₂; PAF, platelet-activating factor; LPS, bacterial lipopolysaccharide

zyme, through which multiple downstream effectors are generated

Eicosanoids and PAF are key mediators of inflammation as well as other pathophysiological conditions [1]. Because prostaglandins, leukotrienes and PAF may all be derived from the action of a PLA₂, direct inhibition of such an enzyme would have the potential of blocking all three of the pathways at once, which could be of therapeutic advantage in certain settings. Thus, the pharmaceutical industry has pursued the design of drugs with potential anti-PLA₂ effects.

Targeting and inhibiting the PLA₂ reaction has proved problematic since numerous PLA₂ enzymes have been identified with overlapping properties, including sites of expression and inhibition susceptibility. In mammals, 19 proteins possessing PLA₂ activity have been described (Tables 1 and 2), all of which have been detected in humans, except for Group IIC PLA₂, which is encoded by a pseudogene [2]. Thus a first step for a rational PLA₂ drug design strategy should be to define the different PLA₂ classes present in cells and elucidate the roles of the specific enzymes in eicosanoid and PAF synthesis.

2. PLA₂ classification

PLA₂s have been systematically classified on the basis of their nucleotide and amino acid sequence [2-4]. The latest update to this classification [2], published in October 2000, included 11 groups, most of which also included several subgroups, but since the publication of that latest update, new PLA₂ enzymes have been described, leading to a 12th group [5,6]. Tables 1 and 2 (adapted from Six and Dennis [2]) depict the most current classification of the PLA₂ enzymes. Group XIII PLA₂, identified in parvoviruses [7,8], and Group XIV PLA₂, identified in Symbiotic fungi [9] and Streptomyces [10,11], have also now been added. Additionally, a putative sea anemone PLA₂ gene has recently been described [12]. Remarkably, the cysteine residues of the primary structure of this putative sea anemone PLA2 align perfectly with the mammalian Group V PLA2s; but, at this time, the sea anemone protein does not meet the criteria for PLA2 classification as previously delineated, i.e. PLA₂ activity of the expressed protein has not been reported [2]. Very recently, a novel lysosomal Ca²⁺-independent PLA₂ has also been described. This enzyme also possesses 1-O-acylceramide synthase activity; therefore, until the physiological activity of this enzyme is

^bDepartment of Chemistry and Biochemistry, School of Medicine and Revelle College, University of California at San Diego, La Jolla, CA 92093-0601, USA

Table 1 PLA₂ groups utilizing a catalytic histidine^a

Group		Initial/common sources	Size (kDa)	Disulfides
I	A	Cobra, krait venom	13–15	7
	В	Mammal pancreas	13–15	7
II	A	Human synovial fluid, platelets, rattlesnake, viper venom	13–15	7
	В	Gaboon viper venom	13–15	6
	C	Rat/mouse testis	15	8
	D	Human/mouse pancreas/spleen	14–15	7
	E	Human/mouse brain/heart/uterus	14–15	7
	F^{b}	Human/mouse testis/skin	16–17	7
III^c		Bee/lizard/scorpion/human	15–18	5
V		Mammal heart/lung/macrophage	14	6
X		Human spleen/thymus/leukocyte	14	8
IX		Snail venom (Conodipine-M)	14	6
XI	A	Green rice shoots (PLA ₂ -I)	12.4	6
	В	Green rice shoots (PLA ₂ -II)	12.9	6
XII		Mammal heart/kidney/skin, Muscle	18.7	7
XIII		Parvovirus	< 10 ^d	0
XIV		Symbiotic fungus/Streptomyces	13–19	2

^aThese are typically small extracellular PLA_2s requiring Ca^{2+} for activity and possessing an active site histidine and aspartate pair. Table adapted with permission from Six and Dennis [2].

established or the specific activity is quantified, classification within the PLA₂ system is premature [13].

A broader classification of the PLA₂s that has historically been utilized to describe PLA₂ activities for which sequence data are not available divides the PLA₂ classes into three types: secretory (sPLA₂), cytosolic Ca²⁺-dependent (cPLA₂), and cytosolic Ca²⁺-independent (iPLA₂). This classification has numerous caveats, e.g. the Group IVC PLA₂ is generally referred to as cPLA₂-γ, despite its being a Ca²⁺-independent enzyme. However, the system remains useful for making generalizations when describing properties of multiple PLA₂ groups or when the specific identity of a PLA₂ is unknown.

3. PLA₂ properties

With the expansion of the superfamily of PLA₂ enzymes, it has become increasingly difficult to generalize the properties of the PLA₂s. However, in general, the mammalian sPLA₂s (Groups IB, IIA,C–F, III, V, X, XII) have low molecular masses (13–19 kDa) and lack specificity for arachidonate-containing phospholipids. The cPLA₂s (Group IV, comprising three subgroups) have higher molecular masses (>60 kDa),

and preferentially hydrolyze arachidonate-containing phospholipids (although Group IVC PLA2 exhibits only a marginal preference). Finally, the iPLA2s (Group VI) have high molecular masses (about 85 kDa) but are not selective for arachidonate-containing phospholipids [2]. It is interesting to note that the Ca2+ requirements of the PLA2s do not distribute within this classification system. For example, although most of the sPLA2s require millimolar levels of Ca2+ for enzymatic activity, the recently described Group XII sPLA2 appears to be an exception, requiring μM Ca2+ levels. Second, Group IVA and Group IVB require Ca2+ for translocation to membranes but not for activity. However, Group IVC is an exception, having no Ca2+ requirement, indicating some biochemical commonality with the iPLA2s.

4. PLA₂ and AA release

The functions of mammalian PLA_2s have largely been studied by examining the cellular regulation and activation of the enzymes in response to specific stimuli. Cellular responses to external stimuli via receptor-dependent or independent pathways elicit a series of signals that ultimately lead to

Table 2 PLA₂ groups utilizing a catalytic serine^a

Group		Initial/common sources	Alternate names employed	Size (kDa)	Ca ²⁺ effects
IV	A	Human U937 cells/platelets, RAW 264.7/rat kidney	cPLA ₂ α	85	<mm; membrane="" th="" translocation<=""></mm;>
	В	Human pancreas/liver/heart/brain	cPLA ₂ β	114	< mM; membrane translocation
	C	Human heart/skeletal muscle	$cPLA_2\gamma$	61	None
VI	A-1	P388D ₁ macrophages, CHO	iPLA ₂ or iPLA ₂ -A	84-85	None
	A-2	Human B-lymphocytes, testis	iPLA ₂ -B	88-90	None
	В	Human heart/skeletal muscle	$iPLA_2\gamma$ or $iPLA_2$ -2	88	None
VII	A	Human/mouse/porcine/bovine plasma	PAF-AH	45	None
	В	Human/bovine liver/kidney	PAF-AH (II)	40	None
VIII	Α	Human brain	PAF-AH Ib α_1 (subunit of trimer)	26	None
	В	Human brain	PAF-AH Ib α_2 (subunit of trimer)	26	None

^aLarger, typically intracellular enzymes that utilize a nucleophilic serine for hydrolytic cleavage with no disulfide bonds and no Ca²⁺ requirement for catalysis. Table adapted with permission from Six and Dennis [2].

^bGroup IIF has an additional Cys in its C-terminal extension.

^cHuman GIIIPLA₂ (55 kDa) has additional novel C-terminal and N-terminal domains.

^dThe parvovirus PLA₂ motif encompasses only approximately 108 residues of the 81-89 kDa VP1up protein.

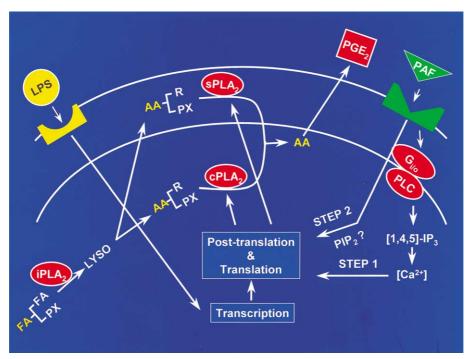


Fig. 1. Signal transduction mechanism in P388D₁ macrophages. Group VIA PLA₂ (iPLA₂) regulates phospholipid reacylation, Group IVA PLA₂ (cPLA₂) is activated by external stimuli and precedes the activation and/or secretion of Group V PLA₂ (sPLA₂). Adapted with permission from Balsinde and Dennis [15].

altered PLA₂ activity. Elucidation of primary and secondary activating signals has been the subject of much effort for the last 10 years [14]. However, the complexity of the signaling cascade and the identification of numerous mechanisms for PLA₂ activation are even further complicated by the overlapping expression of multiple PLA₂ enzymes within the cell. By focusing on PLA₂ responsiveness to macrophage activation, our laboratory has developed a PLA₂ signal transduction model for P388D₁ cells [15] (shown in Fig. 1).

The scheme shown in Fig. 1 has been generally confirmed by many other laboratories [16] and thus can be regarded as a currently accepted paradigm for PLA₂ signaling in immunoinflammatory cells. The macrophage-like cells generate either an immediate response (induced by the Ca²⁺-mobilizing agonist, PAF) or a delayed response (induced by bacterial lipopolysaccharide, LPS). PAF elicits the rapid activation of the PLA₂ enzymes, whereas LPS primarily acts by inducing the cells to synthesize new protein effectors over the span of hours. In both instances, the foremost event is the translocation and activation of Group IVA PLA₂ in an intracellular compartment.

Group IVA (GIVA) PLA₂ activation has been the subject of many studies, and generally involves transient elevations of the intracellular Ca²⁺ concentration and the action of the mitogen-activated protein kinase (MAPK) cascade, resulting in the phosphorylation of Ser⁵⁰⁵ within the catalytic domain of GIVA PLA₂ [17]. There are a few exceptions, however, in which GIVA PLA₂ activation has been described as being activated in a Ca²⁺-independent manner [18] and/or phosphorylated by kinases other than the MAPK family [19].

Following the activation of GIVA PLA₂ is the activation of an sPLA₂, which, depending on cellular type, may belong to Groups II, V, or perhaps other groups. Depending on the stimulus, GIVA PLA₂ modulation of sPLA₂ cellular activity

may occur at the level of regulation of enzyme activity itself (immediate responses) [15] or at the gene regulatory level (delayed responses) [20]. In the former case, a variety of cellular mechanisms might account for this activation, including GIVA PLA₂-induced rearrangement of membrane phospholipids, which in turn may result in the exposure of preferred substrates to the Group II or V enzymes, or more sophisticated biochemical mechanisms such as inactivation of endogenous sPLA₂ inhibitors or Ca²⁺ fluxes. Unlike the Group II and V PLA₂s, Group X PLA₂ does not require the prior activation of GIVA PLA₂; indeed, several groups have shown that Group X PLA₂ mediates spontaneous AA release from the outer surface of the plasma membrane [21–23].

While it is clear that GIVA PLA₂ acts on perinuclear membranes, the precise site of action of sPLA₂ has been the subject of numerous recent studies. The sPLA₂ enzyme appears to be released to the extracellular medium, and subsequently reassociates with the outer cellular surface where it hydrolyzes phospholipids. Recent studies have suggested that the enzyme is re-internalized deep into the cell, probably via the caveolin system to the vicinity of nuclear membranes [24]. Whether the enzyme is still active in the cellular interior or whether internalization represents a signal termination mechanism is unclear at present [25]. Data in human neutrophils [26] and mast cells [27] have suggested that sPLA2 internalization leads to protein degradation. In stark contrast, however, in agonistinduced human embryonic kidney (HEK) 293 cells [28,29] internalization resulted in increased AA release and prostaglandin synthesis. The suggestion has been made that this internalization process allows the sPLA2 to localize in the vicinity of COX-2 in the nuclear envelope area, which would ultimately result in a more efficient conversion of AA into prostaglandins [29].

The model depicted in Fig. 1 illustrates a scenario whereby

the concerted action of two distinct PLA₂s leads to a full AA release response. GIVA PLA₂ initiates the response and plays primarily a regulatory role, whereas sPLA₂ acts in a second 'wave' to amplify the response by providing a significant portion of the total AA liberated, an intriguing finding considering that sPLA₂s are not arachidonyl-selective enzymes [30]. Needless to say, in those cellular systems that do not express an sPLA₂ or do so at very low levels [31], GIVA PLA₂ would be the only PLA₂ enzyme responsible for the release.

In addition, sPLA₂ may also act in a paracrine manner (i.e. as a stimulus itself) on otherwise unstimulated cells near the site where the sPLA₂ enzyme was released. Under these settings, sPLA₂ has been shown to induce activation of GIVA PLA₂, thereby propagating the inflammatory response to neighboring cells [25]. Whether sPLA₂ activity is actually required for GIVA PLA₂ activation (i.e. whether or not sPLA₂ acts on a specific surface receptor) is a matter of debate and probably depends on the type of cell that interacts with the exogenous enzyme [30,32,33].

Studies on the involvement of Group VIA PLA₂ (iPLA₂) in AA mobilization have largely been conducted by using bromoenol lactone, a compound that manifests high selectivity for Group VIA PLA₂ in vitro but whose selectivity in vivo is unclear [34–36]. In phagocytic cells, bromoenol lactone has no effect on stimulus-induced AA mobilization, thus ruling out a role for Group VIA PLA₂ in the process [37–40]. In contrast, in other cell types, most notably heart and pancreatic islets [41–43], bromoenol lactone potently suppresses stimulus-induced AA release, which is consistent with the involvement of Group VI PLA₂.

Recently, Group VIA PLA₂ has been shown to be responsive to cellular stimuli including Ca²⁺ ionophore in HEK 293 cells [44] and glucose plus cAMP-elevating agents in INS-1 insulinoma cells [45], suggesting that the enzyme may play a signaling role. These recent studies utilize cells overexpressing Group VIA PLA₂. Although these studies are useful for suggesting enzymatic functions, the cells that overexpress an enzyme may not represent a true physiological responsiveness. Therefore, additional cellular studies will be necessary to confirm if there is a signaling role for this enzyme.

In P388D₁ macrophages [46] Group VIA iPLA₂ is proposed to mediate phospholipid reacylation reactions by regulating the steady-state level of lysophosphatidylcoline. The lysophospholipid acceptors produced by Group VIA PLA₂ may be used to re-incorporate part of the fatty acids (including AA) that have previously been released by its Ca²⁺-dependent counterparts. Thus, by regulating AA reacylation reactions, Group VIA PLA₂ may participate in the formation of cellular AA pools. Therefore an emerging model of PLA₂ cellular activity indicates that all three types of PLA₂s (sPLA₂, cPLA₂, iPLA₂) appear to serve important but distinct functions regarding AA mobilization in cells.

Acknowledgements: The authors thank David Six for generously providing Tables 1 and 2. This work was supported by Grant GM20501 from the National Institutes of Health, a Biostar/ISIS Pharmaceuticals Grant, Grant BMC2001-2244 from the Spanish Ministry of Science and Technology, Grant CSI-4/02 from the Education Department of the Autonomous Government of Castile and León, and Grant 011232 from Fundació La Marató de TV3. M.V.W. is supported by Fellowship HL10385 from the National Institutes of

References

- Smith, W.L., De Witt, D.L. and Garavito, R.M. (2000) Annu. Rev. Biochem. 69, 145–182.
- [2] Six, D.A. and Dennis, E.A. (2000) Biochim. Biophys. Acta 1488, 1–19.
- [3] Dennis, E.A. (1994) J. Biol. Chem. 269, 13057-13060.
- [4] Dennis, E.A. (1997) Trends Biochem. Sci. 22, 1–2.
- [5] Gelb, M.H., Valentin, E., Ghomashchi, F., Lazdunski, M. and Lambeau, G. (2000) J. Biol. Chem. 275, 39823–39826.
- [6] Ho, I.C., Arm, J.P., Bingham, C.O., Choi, A., Austen, K.F. and Glimcher, L.F. (2001) J. Biol. Chem. 276, 18321–18326.
- [7] Zadori, Z., Szelei, J., Lacoste, M., Li, Y., Gariepy, S., Raymond, P., Allaire, M., Nabi, I.R. and Tijssen, P. (2001) Dev. Cell 1, 291–302.
- [8] Girod, A., Wobus, C.E., Zadori, Z., Ried, M., Leike, K., Tijssen, P., Kleinschmidt, J.A. and Hallek, M. (2002) J. Gen. Vir. 83, 973–978.
- [9] Soragni, E., Bolchi, A., Balestrini, R., Gambaretto, C., Percudani, R., Bonfante, P. and Ottonello, S. (2001) EMBO J. 20, 5079– 5090
- [10] Sugiyama, M., Ohtani, K., Izuhara, M., Koike, T., Suzuzki, K., Imamura, S. and Misaki, H. (2002) J. Biol. Chem. 277, 20051– 20058
- [11] Matoba, Y., Katsube, Y. and Sugiyama, M. (2002) J. Biol. Chem. 277, 20059–20069.
- [12] Talvinen, K.A. and Nevalainen, T.J. (2002) Comp. Biochem. Phys. 132, 571–578.
- [13] Hiraoka, M., Abe, A. and Shayman, J.A. (2002) J. Biol. Chem. 277, 10090–10099.
- [14] Balsinde, J., Balboa, M.A., Insel, P.A. and Dennis, E.A. (1999) Annu. Rev. Pharmacol. Toxicol. 39, 175–189.
- [15] Balsinde, J. and Dennis, E.A. (1996) J. Biol. Chem. 271, 6758–6765.
- [16] Fitzpatrick, F.A. and Soberman, R. (2001) J. Clin. Invest. 107, 1347–1351
- [17] Dessen, A. (2000) Biochim. Biophys. Acta 1488, 40-47.
- [18] Balsinde, J., Balboa, M.A., Li, W., Llopis, J. and Dennis, E.A. (2000) J. Immunol. 164, 5398–5402.
- [19] Leslie, C.C. (1997) J. Biol. Chem. 272, 16709–16712.
- [20] Balsinde, J., Shinohara, H., Lefkowitz, L.J., Johnson, C.A., Balboa, M.A. and Dennis, E.A. (1999) J. Biol. Chem. 274, 25967–25970
- [21] Murakami, M., Kambe, T., Shimbara, S., Higashino, K., Hanasaki, K., Arita, H., Horiguchi, M., Arita, M., Arai, H., Inoue, K. and Kudo, I. (1999) J. Biol. Chem. 274, 31435–31444.
- [22] Bezzine, S., Koduri, R.S., Valentin, E., Murakami, M., Kudo, I., Ghomashchi, F., Sadilek, M., Lambeau, G. and Gelb, M.H. (2000) J. Biol. Chem. 275, 3179–3191.
- [23] Saiga, A., Morioka, Y., Ono, T., Nakano, K., Ishimoto, Y., Arita, H. and Hanasaki, K. (2001) Biochim. Biophys. Acta 1530, 67–76.
- [24] Murakami, M., Nakatani, Y., Kuwata, H. and Kudo, I. (2000) Biochim. Biophys. Acta 1488, 159–166.
- [25] Cho, W. (2000) Biochim. Biophys. Acta 1488, 48-58.
- [26] Kim, K.P., Rafter, J.D., Bittova, L., Han, S.K., Snitko, Y., Muñoz, N.M., Leff, A.R. and Cho, W. (2001) J. Biol. Chem. 276, 11126–11134.
- [27] Enomoto, A., Murakami, M. and Kudo, I. (2000) Biochem. Biophys. Res. Commun. 276, 667–672.
- [28] Murakami, M., Kambe, T., Shimbara, S., Yamamoto, S., Kuwata, H. and Kudo, I. (1999) J. Biol. Chem. 274, 29927–29936.
- [29] Kim, Y.J., Kim, K.P., Rhee, H.J., Das, S., Rafter, J.D., Oh, Y.S. and Cho, W. (2002) J. Biol. Chem. 277, 9358–9365.
- [30] Balsinde, J., Balboa, M.A., Yedgar, S. and Dennis, E.A. (2000) J. Biol. Chem. 275, 4783–4786.
- [31] Degousee, N., Ghomashchi, F., Stefanski, E., Singer, A., Smart, B.P., Borregaard, N., Reithmeier, R., Lindsay, T.F., Lichtenberger, C., Reinisich, W., Lambeau, G., Arm, J.P., Tischfield, J., Gelb, M.H. and Rubin, B.B. (2002) J. Biol. Chem. 277, 5061–5073.
- [32] Lambeau, G. and Lazdunski, M. (1999) Trends Pharmacol. Sci. 20, 162–170.
- [33] Hernández, M., Nieto, M.L. and Crespo, M.S. (2000) Trends Neurosci. 23, 259–264.

- [34] Winstead, M., Balsinde, J. and Dennis, E.A. (2000) Biochim. Biophys. Acta 1488, 28–39.
- [35] Tang, J., Kriz, R.W., Wolfman, N., Shaffer, M., Seehra, J. and Jones, S.S. (1997) J. Biol. Chem. 272, 8567–8575.
- [36] Farooqui, A.A., Horrocks, L.A. and Farooqui, T. (2000) J. Mol. Neurosci. 14, 123–135.
- [37] Marshall, J., Krump, E., Lindsay, T., Downey, G., Ford, D.A., Zhu, P., Walker, P. and Rubin, B. (2000) J. Immunol. 164, 2084– 2091.
- [38] Balsinde, J. (2002) Biochem. J. 364, 695-702.
- [39] Panini, S.R., Yang, L., Rusiñol, A.E., Sinensky, M.S., Bonventre, J.V. and Leslie, C.C. (2002) J. Lipid Res. 42, 1678–1686
- [40] Hsu, F.F., Ma, Z., Wohltmann, M., Bohrer, A., Nowatzke, W.,

- Ramanadham, S. and Turk, J. (2000) J. Biol. Chem. 275, 16579–16589.
- [41] Nowatzke, W., Ramanadham, S., Ma, Z., Hsu, F.F., Bohrer, A. and Turk, J. (1998) Endocrinology 139, 4073–4085.
- [42] McHowat, J. and Creer, M. (1997) Am. J. Physiol. 272, H1972– H1980.
- [43] Wolf, M.J., Wang, J., Turk, J. and Gross, R. (1997) J. Biol. Chem. 272, 1522–1526.
- [44] Murakami, M., Kambe, T., Shimbara, S. and Kudo, I. (1999) J. Biol. Chem. 274, 3103–3115.
- [45] Ma, Z., Ramanadham, S., Wohltmann, M., Bohrer, A., Hsu, F.F. and Turk, J. (2001) J. Biol. Chem. 276, 13198–13208.
- [46] Balsinde, J., Balboa, M.A. and Dennis, E.A. (1997) J. Biol. Chem. 272, 29317–29321.